The Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph

Authors

  • Gh. Soleimani Rad Department of Mathematics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
  • K. Fallahi Department of Mathematics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
Abstract:

In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a Banach contractive type mapping in algebraic cone metric spaces associated with an algebraic distance and endowed with a graph.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Algebraic distance in algebraic cone metric spaces and its properties

In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.

full text

The Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application

In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...

full text

Some Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces

In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...

full text

Fixed point results in cone metric spaces endowed with a graph

In this paper, we prove the existence of fixed point for Chatterjea type mappings under $c$-distance in cone metric spaces endowed with a graph. The main results extend, generalized and unified some fixed point theorems on $c$-distance in metric and cone metric spaces.

full text

Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph

In this paper, we introduce the notion of strictly (α,ψ,ξ)-G-contractive mappings in b-metric spaces endowed with a graph G. We establish a sufficient condition for existence and uniqueness of points of coincidence and common fixed points for such mappings. Our results extend and unify many existing results in the literature. Finally, we construct some examples to analyze and support our results.

full text

Reich Type Contractions on Cone Rectangular Metric Spaces Endowed with a Graph

In this paper we prove some fixed point theorems for Reich type contractions on cone rectangular metric spaces endowed with a graph without assuming the normality of cone. The results of this paper extends and generalize several known results from metric, rectangular metric, cone metric and cone rectangular metric spaces in cone rectangular metric spaces endowed with a graph. Some examples are ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 1

pages  41- 52

publication date 2020-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023